Galeria de Modelos

The Model Gallery features COMSOL Multiphysics model files from a wide variety of application areas including the electrical, mechanical, fluid, and chemical disciplines. You can download ready-to-use models and step-by-step instructions for building the model, and use these as a starting point for your own modeling work. Use the Quick Search to find models relevant to your area of expertise, and login or create a COMSOL Access account that is associated with a valid COMSOL license to download the model files.

Modeling of a Gyroscope

This model illustrates the working of a gyroscope used to measure or maintain an orientation. Its operation is based on on the principles of conservation of angular momentum. In this model, all the components are modeled as rigid bodies. Hinge joints are used to establish a connection between different parts. The orientation of the spinning disc is analyzed for a certain rotational speed of the ...

Three-Cylinder Reciprocating Engine

In this example, a dynamic analysis of a three-cylinder reciprocating engine is performed to investigate stresses generated during operation, thereby permitting identification of the critical components. Demand for high power output relative to the weight of the engine requires careful design of its components. This model of a reciprocating engine contains a combination of rigid and flexible ...

Stresses and Heat Generation in a Landing Gear Mechanism

This model simulates the dynamics of the shock absorber used in a landing gear mechanism of an aircraft. It analyses the stresses, as well as the heat generated in the landing gear components due to the energy dissipated in the shock absorber. A prismatic joint, with spring and damper, is used to model the shock absorber assembly.

Helicopter Swashplate Mechanism

This model illustrates the operation of a swashplate mechanism used in helicopters to translate the input of helicopter flight control into the motion of the rotor blades, and hence controls the orientation of the rotor blades. In this model, the rotor blades are modeled as either rigid bodies or flexible bodies in two different cases. All other components are assumed to be rigid bodies. Stress ...

Slider Crank Mechanism

This is a benchmark model to test the numerical algorithms in the area of multibody dynamics. This model simulates the dynamic behavior of the slider crank mechanism. This mechanism goes through singular positions during its operation. The acceleration at a point is compared with the results from the reference.

Mechanical Assembly with Hinge Joint

This example illustrates how to model a barrel hinge connecting two solid objects in an assembly. In this model, the details of the connection are not the focus of the analysis, therefore, the hinge joint is modeled using a Joint feature in the Multibody Dynamics Module. The connected parts can be either rigid or flexible or a combination as shown in this model.

Spring Loaded Centrifugal Governor

A centrifugal governor is used to control the speed of rotating machinery. One of the most common applications is in controlling the RPM of an engine by regulating the fuel supply. This model illustrates the functioning of a spring loaded centrifugal governor. The dynamics of the governor are analyzed under the influence of a centrifugal force, spring force, and damping force. The sleeve ...

Dynamic Behavior of a Spring Loaded Rotating Slider

This model illustrates the modeling of slider motion caused by a base rotation. The motion of the slider is analyzed under various forces such as inertia force, centrifugal force, spring force and damping force. The prismatic joint, which is used to connect the two components, is spring loaded and also includes damping effects. The motion of the slider is compared with the analytical solution, ...

Dynamics of a Double Pendulum

This is a tutorial model that shows how to model a hinge joint and use additional functionality including constraints, locking, spring-damper and prescribed motion. The model illustrates the nonlinear dynamics of the double pendulum. Locus of the tip of the lower arm and the phase space curve are plotted to demonstrate the chaotic behavior of a double pendulum. Many real structures can ...

Andrew's Squeezing Mechanism

This is a benchmark model for rigid body dynamics. This model simulates the dynamic behavior of "Andrew’s squeezing mechanism", which is force driven and requires a very small time scale. Various angles in the mechanism are compared with the results from the reference.

Quick Search

1 - 10 of 12 First | < Previous | Next > | Last