Use of COMSOL Multiphysics for Optimization of an All-Liquid PEM Fuel Cell

G.H. Miley[1], and E.D. Byrd[2]
[1] Department of NPRE, University of Illinois at Urbana-Champaign
[2] Department of ECE, University of Illinois at Urbana-Champaign

A model has been designed and constructed for the all-liquid, sodium borohydride/hydrogen peroxide fuel cell.

The electrochemical behavior, momentum balance, and mass balance effects within the fuel cell are modeled using the Butler-Volmer equations, Darcy’s law, and Fick’s law, respectively within COMSOL Mutiphysics.

The simulations performed with the model indicate that an optimal physical design of the fuel cell’s flow channel land area or current collector exists when considering the pressure differential between channels, and the diffusion layer permeability and conductivity.