Artigos Técnicos e Apresentações

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Modeling Remote H2 Plasma in a Semiconductor Processing Tool

J. Brcka
TEL Technology Center, America, LLC

Hydrogen plasma is typically used in the semiconductor industry for materials processing, surface preparation and cleaning of silicon wafers and thin films. In this contribution, we developed a 2D/3D plasma fluid model as described by the set of the species and energy balance equations in a generic semiconductor tool chamber with remote Inductively Coupled Plasma (ICP) source. Background ...

Hybrid Modeling of a DC Magnetron Plasma Discharge

S.D. Ekpe[1], F. Jimenez[2], and S.K. Dew[2]
University of Alberta, Edmonton

This work is focused on the coupling of a Monte Carlo code with COMSOL Multiphysics conduction/convection, and electrostatic modules in solving fluid-Poisson model for the plasma properties for a practical DC magnetron low pressure plasma discharge. The magnetostatic module was used in calculating the required magnetic field.

Using Coupling Variables to Solve Compressible flow, Multiphase flow and Plasma Processing Problems

D. Smith
MKS Instruments

This presentation summarizes three different types of modeling using COMSOL Multiphysics. It is divided into three parts: Compressible flow, Multiphase flow, and Plasma Simulations. For the first part, we perform a special case study of the Mass Flow Verifier. A Mass Flow Verifier validates the accuracy of a Mass Flow Controller by measuring the rate of change of pressure in a fixed volume. ...

Solidification of a Liquid Metal Droplet Impinging on a Cold Surface

Tanai L. Marin,
Faculty of Physics and Mathematics Sciences,
Department of Mining Engineering,
University of Chile,
Santiago, Chile

A method for the solidification of a free surface liquid phase is presented and solved with COMSOL Multiphysiscs using a fixed grid. In this case, the Level set method with phase re-injection for mass conservation is used to prescribe the movement of the free surface of the liquid droplet, whereas a modified version of the method presented by Voller and Prakash is used to account for the ...

Modeling Ocean Currents in COMSOL Multiphysics

R. Malek-Madani, and K. McIlhany
Mathematics Dept., United States Naval Academy

The equations that govern motion in oceans and estuaries form a system of nonlinear partial differential equations for velocity, temperature and salinity fields set in complex bathymetries. A hierarchy of intermediate qualitative models have been proposed to help investigators understand the impact of wind stress, Coriolis force, and viscosity. We will present an analysis of these models ...

FEM Simulation of a Micro-Cantilever Optical-MEMS Sensor

V. Mathur, J. Li, and W.D. Goodhue
Photonics Center, Department of Physics and Applied Physics, University of Massachusetts, Lowell

In this work a micro-cantilever optical-MEMS sensor based on the AlGaAs system is designed and modeled. The device consists of two micro-cantilever beams perfectly aligned with the free ends separated by approximately 200 nm up to 2000 nm. The finite element method (FEM) (COMSOL Multiphysics) has been employed here to model the structural deformation and light propagation through the device. ...

Towards Modelling Semiconductor Heterojunctions

R. Millett[1], J. Wheeldon[2], T. Hall[1], and H. Schriemer [1,2]
[1] Centre for Research in Photonics, School of Information Technology and Engineering, University of Ottawa, Canada
[2] Centre for Research in Photonics, Dept. of Physics, University of Ottawa, Canada

A 2D multiphysics model has been developed to simulate heterojunctions separating abruptly doped semiconductor layers of different dopant concentrations. Numerical results are presented for the case of nN, pN and PpN heterojunctions, and a general procedure for simulating multiple heterojunctions is described.

Finite Element Approach to Microwave Sintering of Oxide Materials

Yuhua Duan1,2, Dan C. Sorescu1 and J. Karl Johnson1,3
1National Energy Technology Laboratory, 2Parsons Project Services Inc.,3Department of Chemical Engineering

Microwave sintering has been applied to a wide variety of, and recent experimental results have showed that for semi-metal or magnetic materials, the magnetic field (H) can have a significantly larger contribution than the electric field (E) during sintering. We have employed COMSOL Multiphysics to simulate the sintering process by adding the magnetic field contribution into the heating source. ...

Design and Simulation of a Spout Fluid Bed Coating System

Joel L. Plawsky and Howard Littman
Department of Chemical and Biological Engineering
Rensselaer Polytechnic Institute
Troy, NY

Since aerogel materials are open cell, inorganic foams, the surface pores of the material must be sealed for large scale application. Here we discuss the design and development of a spout fluid bed system for producing coated aerogel particle material. COMSOL Multiphysics was used in the design of the system to track the details of the flow field and individual aerogel particle trajectories. ...

Finite-element Validation of Electric Field Distribution inside a Cylindrical Conductor for an Ideal Two-Probe Impedance Measurement

V.S. Kumar, G. Kelekanjeri, and R.A. Gerhardt
Georgia Institute of Technology

A COMSOL Multiphysics model is used to validate recently derived closed-form analytical expressions for the electric field inside a cylindrical conductor for the case of a two-probe impedance measurement. A two-probe impedance measurement consists of applying an AC signal across a specimen placed in between the source and sink electrodes. Analytical solutions for the axial and the radial ...

Quick Search

1 - 10 of 77 First | < Previous | Next > | Last