Artigos Técnicos e Apresentações

Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abramgem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

Better Understanding of Resonance through Modeling and Visualization

D.O. Ludwigsen, C. Jewett, and M. Jusczcyk
Kettering University

Students encounter cavity resonance and waveguide phenomena in acoustics courses and texts, where the study is usually limited to cases with simple geometries: parallelepipeds, cylinders, and spheres. At Kettering University, we are beginning to employ finite element modeling in our acoustics classes to help undergraduates better understand the acoustic modes of actual structures. This ...

FEM Simulation of a Micro-Cantilever Optical-MEMS Sensor

V. Mathur, J. Li, and W.D. Goodhue
Photonics Center, Department of Physics and Applied Physics, University of Massachusetts, Lowell

In this work a micro-cantilever optical-MEMS sensor based on the AlGaAs system is designed and modeled. The device consists of two micro-cantilever beams perfectly aligned with the free ends separated by approximately 200 nm up to 2000 nm. The finite element method (FEM) (COMSOL Multiphysics) has been employed here to model the structural deformation and light propagation through the device. ...

Using COMSOL Multiphysics to Model Viscoelastic Fluid Flow

B.A. Finlayson
Department of Chemical Engineering, University of Washington

Viscoelastic fluids have first normal stress differences even in rectilinear flow. Thus, they are more complicated than purely viscous non-Newtonian fluids modeled as a power-law model or Carreau model. Viscoelastic effects must be included when modeling the flow of polymer melts and concentrated polymer solutions in situations for which the normal stresses matter. The extrudate swell problem ...

Development of a Coupled 2D-3D Fuel Cell Model for Flow Field Analysis

G.H. Miley[1], G. Hawkins[2], and J. Englander[2]
[1] Department of Nuclear, Radiological, and Plasma Engineering, University of Illinois at Urbana-Champaign
[2] Department of Aerospace Engineering, University of Illinois at Urbana-Champaign

The sodium borohydride and hydrogen peroxide liquid fuel cell developed at the University of Illinois shows promise as a viable energy source for a wide range of applications. To achieve higher powers for a fixed active area, an optimal flow field design is desired, and a coupled 2D-3D model of the fuel cell was developed using the COMSOL Multiphysics software package. The model is governed by ...

Solidification of a Liquid Metal Droplet Impinging on a Cold Surface

Tanai L. Marin,
Faculty of Physics and Mathematics Sciences,
Department of Mining Engineering,
University of Chile,
Santiago, Chile

A method for the solidification of a free surface liquid phase is presented and solved with COMSOL Multiphysiscs using a fixed grid. In this case, the Level set method with phase re-injection for mass conservation is used to prescribe the movement of the free surface of the liquid droplet, whereas a modified version of the method presented by Voller and Prakash is used to account for the ...

Simulating the Generation and Guided Propagation of Terahertz Radiation using COMSOL Multiphysics

Jason A. Deibel
Rice University

Electromagnetic waves within the Teraherz frequency spectrum are common in medical techonolgy applications, such as imaging, spectroscopy and drug detection. In this presentation, we explain how Teraherz Radiation is used in different applications, how to produce Electromagnetic waves in the Teraherz frequency, and how to analyze them. Simulations in COMSOL Multiphysics are included as ...

Hybrid Modeling of a DC Magnetron Plasma Discharge

S.D. Ekpe[1], F. Jimenez[2], and S.K. Dew[2]
University of Alberta, Edmonton

This work is focused on the coupling of a Monte Carlo code with COMSOL Multiphysics conduction/convection, and electrostatic modules in solving fluid-Poisson model for the plasma properties for a practical DC magnetron low pressure plasma discharge. The magnetostatic module was used in calculating the required magnetic field.

Simulation of the Capacitive Double Layer at the Interface between Microelectrodes and Cortical Tissue Using Comsol Multiphysics and SPICE Modeling

R.M. Field, and M. Ghovanloo
NC-Bionics Laboratory, North Carolina State University

The interface between microelectrodes and biological tissue is of great interest to researchers working on extracellular stimulation. In this paper, we outline a method used to model the complex double layer capacitance at the interface between the electrodes and the cortex. This model relies on the combined power of SPICE, MATLAB, and COMSOL Multiphysics. The goal of this model is to ...

COMSOL Modelling of the Gas Mixing Process in a Ripple Reducer for NPL’s Time Division Dilution System

J. Wang, B.A. Goody, and M.J.T. Milton
National Physical Laboratory, Teddington, Middlesex, UK

The mixing process of a ripple reducer designed for a time division dilution system (TDD) that dynamically generates calibration gas mixtures is modelled in 2D using COMSOL Multiphysics. The model can been used to visualize and optimize the mixing process and extract parameters of interest at chosen times and positions. The simulated time response of an analyte concentration agrees with ...

Modeling Mechanical Stress in the Silicon Fabrication Process using COMSOL Multiphysics

A. Kalavagunta
Vanderbilt University

This paper discusses the impact and modeling of stress experienced during the silicon fabrication process for Mosfets. The work addresses some of the issues that come up while trying to model the impact strain has on device performance. Strain dependent mobility models are also discussed.

Quick Search