Artigos Técnicos e Apresentações

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Wireless Interaction of Neighboring Two Arm Archimedes Spiral Coils in the RF Electromagnet Range

A. Kalinowski[1]
[1]Naval Undersea Warfare Center/ Division Newport, Newport, RI, USA

The paper addresses a class of problems for modeling and consequently simulating the electromagnetic field radiation pattern from two arms Archimedes spiral coils. The frequency spatial wavelengths relative to the coil dimensions are in a range where the electromagnetic Maxwell’s equations are solved numerically via the RF Module of COMSOL ...

Multiphysics Simulation of Isoelectric Point Separation of Proteins Using Non-Gel Microfluidic System

A. Contractor[1], N. Xue[2], J.B.Lee[2], A. Balasubramanian[1], and G. Hughes[1]
[1]Lynntech, Inc., College Station, Texas, USA
[2]Micro Nano Devices and Systems (MiNDS) Laboratory, Department of Electrical Engineering, University of Texas at Dallas, Texas, USA

A portable device that can identify protein and peptides real time in complex biological systems such as human bodily fluids reliably and accurately is in high demand to properly diagnose and treat medical conditions. Lynntech has developed an innovative Polydimethylsiloxane (PDMS) based microfluidics system with a unique design utilizing multi-channel inlets and outlets for isoelectric point ...

Modeling of Nerve Stimulation Thresholds and Their Dependence on Electrical Impedance with COMSOL

P. Krastev[1], and B. Tracey[1]
[1]Neurometrix, Inc., Waltham, Massachusetts, USA

Nerve localization is important for applications in regional anesthesia. Localization is achieved by stimulating the nerve with an electric field produced by a current from a needle inserted into the body of the patient, close to the target nerve.  Modeling of the electric field in close proximity to the nerve may help to explain observed variations in threshold currents and can help to ...

Negative Thermal Expansion Materials: Thermal Stress and Implications for Composite Materials

M.J. Jakubinek[1,2], C.A. Whitman[2,3], and M.A. White[1,2,3]
[1]Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada
[2]Institute for Research in Materials, Dalhousie University, Halifax, Nova Scotia, Canada
[3]Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada

There is considerable interest in the possibility of combining NTE materials with normal (positive) thermal expansion materials, to reduce the potential of failure of a material or component due to thermal stress fracture. Finite element analysis (FEM) is used to explore the overall expansion and thermal stress in composites.

Image-based Simulation of Electrical Impedance Techniques Applied on the Human Thorax for Cardio-pulmonary Applications

A. Harkara[1], R.M. Heethaar[2], R.T. Cotton[1], and F.K. Hermans[2]

[1]Simpleware Ltd., Exeter, UK
[2]VU University Medical Center, Amsterdam, Netherlands

For medical diagnostic purposes there is an increasing need for non-(or minimal) invasive techniques to measure all kinds of parameters that can provide insight in the functioning of cells, organs or organ systems. Currently, Impedance Cardiography (ICG) is used for measurements of the heart and Electric Impedance Tomography (EIT) is used for investigating lung tissue condition. The PDE is ...

Benchmarking COMSOL - Part 2: CFD Problems

Darrell Pepper
Professor of Mechanical Engineering,
University of Nevada - Las Vegas

Using COMSOL 3.5a, a set of benchmark problems requiring the use of the COMSOL Computational Fluid Dynamics (CFD) module has been simulated. Several of the problems include fluid-heat transfer interactions (Computational Heat Transfer - CHT). The four problems are: flow over a 2-D circular cylinder compressible flow in a shock tube incompressible heated flow over a 2-D backward facing step ...

The Use of CFD Simulations in Learning Fluid Mechanics at the Undergraduate Level

Marc K. Smith
Professor of Mechanical Engineering, Georgia Institute of Technology

Simple, accurate CFD simulations using COMSOL Multiphysics are used in a senior-level undergraduate course as a means to explore a number of fluid flows with the intent of developing a deep understanding of the underlying fluid mechanical mechanisms involved in the flows. Students also learn about the finite element method, how to properly pose the underlying mathematical model for the fluid ...

Computational Modeling of Magnetorheological Elastomers Using Soft and Hard Magnetic Particles

J. Biggs[1], P. VonLockette[1], and S. Lofland[1]
[1]Rowan University, Glassboro, New Jersey

Magnetorheological Elastomers (MREs) are a composite that consist of magnetic micrometer sized particles suspended within rubber matrix filler. By placing this material within an external magnetic field during the rubber curing process, the poles of the particles are forced to align and form chains of particles within the matrix. These chains cause the MRE to change its stiffness properties when ...

Experimental Observation and Numerical Prediction of Induction Heating in a Graphite Test Article

T.A. Jankowski[1], D.P. Johnson[1], J.D. Jurney[1], J.E. Freer[1], L.M. Dougherty[1], and S.A. Stout[1]

[1]Los Alamos National Laboratory, Los Alamos, New Mexico, USA

The induction heating coils used in the plutonium casting furnaces at the Los Alamos National Laboratory are studied here. A cylindrical graphite test article has been built, instrumented with thermocouples, and heated in the induction coil that is normally used to preheat the molds during casting operations. The experiments have been modeled in COMSOL Multiphysics and the numerical and ...

Analysis of the Acoustic Response of a Railroad Bridge

K. Koppenhoefer[1], S.Yushanov[1], and M.H. McKenna[2]

[1]AltaSim Technologies, LLC, Columbus, Ohio, USA
[2]U.S. Army Engineering Research and Development Center

Aging infrastructure requires frequent inspections to assess their structural integrity. However, the large amount of existing infrastructure, and the distance between these structures present significant challenges to inspectors. Acoustics-based technologies represent a simple, and relatively inexpensive, technique to monitor the integrity of a structure. To develop these techniques, designers ...

Quick Search