Artigos Técnicos e Apresentações

Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abramgem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

A Model of Gas Bubble Growth by COMSOL Multiphysics

B. Chinè[1,2], and M. Monno[1,3]
[1]Laboratorio MUSP, Macchine Utensili e Sistemi di Produzione, Piacenza, Italy
[2]Instituto Tecnològico de Costa Rica, Escuela de Ciencia e Ingenierìa de Materiales, Cartago, Costa Rica
[3]Politecnico di Milano, Dipartimento di Meccanica, Milano, Italy

We use COMSOL Multiphysics to model a gas bubble expansion in a viscous liquid initially at rest, a very common system for lightweight foamed materials from metal production and polymer processing. Modelling and simulation of foam processing during the production step involves many complexities, mainly due to the coupled momentum, mass and energy transport mechanisms, presence of more phases in ...

Design of Small-Scaled de Laval Nozzle for IGLIS Experiment

E. Mogilevskiy[1], R. Ferrer[1], L. Gaffney[1], C. Granados[1], M. Huyse[1], Yu. Kudryavtsev[1], S. Raeder[1], P. Van Duppen[1]
[1]KU Leuven, Instituut voor Kern- en Stralingsfysica, Leuven, Belgium

De Laval nozzles are used in supersonic aerodynamical tubes and engines. They are also employed for the production of cold gas jets to be used in chemical reactions studies. Recently, cold gas jets have been proposed of In-Gas Laser ionization Spectroscopy (IGLIS) The nozzle has a converging and a diverging part with a throat between them. High gas pressure and temperature, and low velocity are ...

Modeling of Turbulent Combustion in COMSOL Multiphysics®

D. Lahaye[1], L. Cheng[2]
[1]DIAM, EEMCS Faculty, TU Delft, The Netherlands
[2]Tsinghua University, Beijing, China

In the production of high quality materials by a heat treatment, it is indispensable to accurately predict the temperature inside the furnaces being employed. In this work we develop a turbulent combustion model for the heat being released by gas burners inside a shaft kiln. Turbulent combustion is the strongly coupled phenomena of the chemically reacting fuel and oxygen in a turbulent flow. We ...

Modeling two-phase flow in strongly heterogeneous porous media

Z. Huang
China University of Petroleum, Research Center for Oil & Gas Flow in Reservoir, Qingdao City, China

Modeling Two-phase flow through strongly heterogeneous porous media is of importance in many disciplines including petroleum industry, hydrology etc. There are, however, still some challenges in numerical simulation of such flow problems especially the flows in fractured porous media and fractured vuggy porous media. The aim of this report is to implement in COMSOL Multiphysics a two-phase fluid ...

Entropic Evaluation of Dean Flow Micromixers

P. S. Fodor[1], M. Kaufman[1]
[1]Cleveland State University, Cleveland, OH, USA

In this work we investigate computationally the use of spiral channels at Reynolds numbers from 25 to 900 as a mixing structure (Figure 1) using COMSOL Multiphysics, the CFD Module, and the Chemical Species Transport physics. In this system, the centrifugal forces experienced by the fluid as it travels along the curved trajectory induce counter-rotating flows. The presence of these transversal ...

Modeling of a Magnetocaloric System for Electric Vehicles

A. Noume[1], C. Vasile[1], M. Risser[1]
[1]National Institute of Applied Science (INSA), Strasbourg, France

In automotive industry, regardless the type of engine we use, heating and air-conditioning is responsible for the highest energy consumption among all the auxiliary systems all over the year. For conventional vehicles with thermal engines, the heating of the internal space is easy obtainable because of the heat waste from the engine. For the electric vehicles, as the energy is delivered by the ...

SD Numerical Simulation Technique for Hydrodynamic Flow Gas-Solids Mixing

I. Mantilla[1], S. De Vicente[2]
[1]National University of Engineering, Lima, Perú
[2]Polytechnic University of Madrid, Madrid, Spain

We formulate a new mathematical model of gas-solids mixing hydrodynamic flow [1] in a combustion chamber with a fluid bed system used in the combustion of mineral coal waste. This model in study is called Model Gas-Solids Mixing and it is constructed by averaging the conservation equations (mass and momentum) for a two-phase flow, which takes into account the existence of a small parameter rho in ...

Two-Phase Flow and Multiphysics Simulations in COMSOL


Dr. Singh has been working at the Chemical Engineering Division, Bhabha Atomic Research Centre, Mumbai since 2000. He has a Ph.D. from the Department of Chemical Engineering, IIT Bombay. He is a recipient of the Homi Bhabha Medal of Bhabha Atomic Research Centre in year 2000, Young Engineer Award of the Department of Atomic Energy in year 2008 and Award for Excellence in Thesis Work at IIT ...

Effects of Flow and Diffusion on Blood Coagulation in Platelet Poor Plasma: a Two-way Coupling Between Hemodynamics and Biochemistry

D. Magnabosco[1,2], H. van Ooijen[2], B. Bakker[2], R. van den Ham[2]
[1]Politecnico di Milano, Milan, Italy
[2]Philips Research, Eindhoven, The Netherlands

Enzyme reactions, blood flow and diffusion in human vasculature play interacting and fundamental roles in blood coagulation. In this complex mechanism, the balance between blood and clot is a delicate equilibrium, whose tight regulation is vital to avoid pathologies such as bleeding and thrombosis. The secondary hemostasis triggered by tissue factor in platelet poor plasma is studied up to fibrin ...

An MHD Study of the Behavior of an Electrolyte Solution Using 3D Numerical Simulation

L. P. Aoki[1], H. E. Schulz[1], M. G. Maunsell[1]
[1]University of São Paulo, São Carlos, SP, Brazil

This article considers a closed water circuit with square cross section filled with an electrolyte fluid. The conductor fluid was moved using an electromagnetic pump, in which a permanent magnet generates a magnetic field and electrodes generate the electric field in the flow. Thus, the movement is a consequence of the magnetohydrodynamic (or MHD) effect. The model adopted here was derived from ...

Quick Search