Artigos Técnicos e Apresentações

Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abramgem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

Using COMSOL for Optimal Design of Engineering Barriers of Nuclear Waste Repositories

L.M. de Vries[1], A. Nardi[1], A.E. Idiart[1], P. Trinchero[1], J. Molinero[1], F. Vahlund[2], H. von Schenck[2]
[1]Amphos 21, Barcelona, Spain
[2]Swedish Nuclear Fuel and Waste Management, Stockholm, Sweden

The Swedish Nuclear Fuel and Waste Management Co (SKB) is responsible for final disposal of spent fuel and radioactive waste. SKB operates SFR, an underground waste repository in crystalline rock. The evolution of groundwater flow within the repository needs to be estimated considering different options for the design of the engineered barriers. The goal is to predict the effects of flow and ...

FEMLAB Modeling of Multiple Crack Systems

Grechka, V.1, Kachanov, M.2
1 Shell E & P, Houston, TX
2 Department of Mechanical Engineering, Tufts University, Medford, MA

Almost ubiquitous presence of fractures in the earth and their tendency to provide natural pathways for flow of hydrocarbons makes them an important target in exploration for oil and gas. While typical geophysical (mainly seismic) data indicate only relatively large faults, information about many small fractures of exploration interest has to be inferred from seismics by applying some effective ...

3-D Multiphysics Modeling of a Producing Hydrocarbon Field

McKenna, J.R.1, Blackwell, D.D.2
1 U.S. Army Engineer Research & Development Center, Geotechnical & Structures Laboratory, Vicksburg, Mississippi
2 Department of Geological Sciences, Southern Methodist University, Dallas, Texas

Thermal anomalies indicating elevated temperatures often are present in producing hydrocarbon fields. This paper discusses precision temperature logs obtained over a salt dome in the Bayou Bleu hydrocarbon field in southwest Lousiana, and presents a 3-D thermal-fluid model of the dome constrained by these types of logs. The numerical model in which both an enhanced thermal conductivity ...

Modeling Soil Water Dynamics with Time-Variable Soil Hydraulic Properties

A. Schwen[1], G. Bodner[2], A. Schnepf[3], D. Leitner[3], G. Kammerer[1], and W. Loiskandl[1]

[1]Institute of Hydraulics and Rural Water Management, Univ. Natural Resour. Appl. Life Sci., BOKU, Wien, Austria
[2]Institute of Agronomy and Plant Breeding, Univ. Natural Resour. Appl. Life Sci., BOKU, Wien, Austria
[3]Institute of Soil Science, Univ. Natural Resour. Appl. Life Sci., BOKU, Wien, Austria

Modeling soil water dynamics requires an accurate description of soil hydraulic properties, i.e. the retention and hydraulic conductivity functions. Generally, these functions are assumed to be unchanged over time in most simulation studies. In this paper, we implemented temporal changes in the soil hydraulic properties in a Richards’ equation simulation of soil water dynamics. Based on ...

Sheath and Potential Profiles around RP Sensors and the Gondola in the Huygens Experiment

R. Godard
Department of Mathematics and Computer Science, Royal Military College of Canada, Kingston, ON, Canada

Preliminary results of the Relaxation probe (RP) in the Huygens experiment have provided evidence that the potential profiles around sensors do not obey to a Laplace field, but to a Poisson field. In this present work, we analyze possible interactions or shadowing effects between sensors, booms and the gondola, and the data processing of RP sensors. The governing equations for the fluid model ...

The Effects of a Superparamagnetic Ground on the EMI Response of a Target

A. T. Clark[1]
[1]Research & Development, WM Robots LLC, Colmar, PA, USA

Soil’s electromagnetic properties adversely affect the performance of electromagnetic induction (EMI) sensors and if conditions are severe enough, render them useless. A simple circuit model is often used to express the electromagnetic induction response of a target analytically. This analytic model produces a response function that contains unique characteristics based on the target’s ...

Modeling Self-Potential Effects during Reservoir Stimulation in Enhanced Geothermal System

G. Perillo[1], A. Monetti[2], A. Troiano[2], M. G. Di Giuseppe[2], C. Troise[2], G. De Natale[2]
[1]University of Naples Parthenope, Naples, Italy
[2]INGV-Osservatorio Vesuviano, Naples, Italy

Geothermal systems represent a large resource that can provide, with a reasonable investment, a very high and cost-effective power generating capacity. Despite its unquestionable potential, geothermal exploitation has long been perceived as limited, mainly because of the dependence from strict site-related conditions, mainly related to the reservoir rock’s permeability. In this work, SP ...

Short-Term Behavior and Steady-State Value of BHE Thermal Resistance

S. Lazzari[1], A. Priarone[2],
[1]DIN, University of Bologna, Bologna, Italy
[2]DIME-TEC, University of Genova, Genova, Italy

The transient behavior of the thermal resistance of single and double U-tube borehole heat exchangers (BHEs) is investigated numerically by means of COMSOL Multiphysics® software with reference to the 2D cross section of usually employed BHEs. The study is performed in a dimensionless parametrical form, the parameters being the ratio between the thermal conductivities of grout and ground, the ...

Analysis of 1D, 2D, and 3D Marine CSEM in COMSOL Multiphysics® Software

E. C. Luz[1]
[1]Universidade Federal do Pará, Belém, PA, Brazil

The Marine Controlled Source ElectroMagnetic (marine CSEM) is a geophysical method used by the oil industry to investigate resistive targets in the sediments under the ocean floor. In this work we simulate marine CSEM data including 1D, 2.5D and 3D modeling. The results obtained with COMSOL Multiphysics show themselves as a promising tool for the studies of electromagnetic methods in prospecting ...

Underground Coal Fire Extinction Model Using Coupled Reactive Heat and Mass Transfer Model in Porous Media

S. Suhendra[1], M. Schmidt[1], and U. Krause[1]
[1]Laboratory II.2: “Flammable Bulk Materials and Dusts, Solid Fuels”, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany

Green house gases emission associated with natural hazard of underground coal seam fire has been recognized as a worldwide problem leading to global warming threat. Therefore, in this paper a model to study underground coal fire is presented and the results will be devoted to strategic development of coal fire extinction technology within the framework of Sino-German Coal Fire Research ...

Quick Search