Artigos Técnicos e Apresentações

Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abramgem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

Design of MEMS based Polymer Microphone for Hearing Aid Application

V. S. Nagaraja[1], Ramanuja H. S.[1], Deepak K[1], S. L. Pinjare[1]
[1]Electronics and Communication Engineering, Nitte Meenakshi Institute of Technology, Bangalore, Karnataka, India

In this work, a MEMS based condenser microphone [1,2] using Polyimide as the diaphragm has been designed. The microphone structure has a backplate placed on top of the diaphragm. The backplate and the diaphragm are made up of polyimide. The two polyimide plates are separated by air gap which is achieved by using Aluminium as a sacrificial layer in between, which is etched away to create the air ...

Modelling of SiC Chemical Vapour Infiltration Process Assisted by Microwave Heating

G. Maizza[1] and M. Longhin[1]
[1]Dipartimento di Scienza dei Materiali ed Ingegneria Chimica, Politecnico di Torino, Torino, Italy

The excessive presence of residual SiC matrix inter-fiber pores is often the main cause for the very poor mechanical strength and toughness of SiC/SiC composites manufactured by CVI (Chemical Vapour Infiltration) process. This work presents a micro/macro Microwaveassisted Chemical Vapour Infiltration (MW-CVI) model as a strategy to attack the problems above. The proposed model couples a ...

Simulation of a Micro-Analytical Device for Adsorbing Substances from a Fluid

R. Winz1, A. de los Rios Gonzalez2, E. von Lieres3, M. Schmittel2, and W. Wiechert1
1Department of Simulation, University of Siegen, Siegen, Germany
2Department of Organic Chemistry, University of Siegen, Siegen, Germany
3Institute of Biotechnology, Research Centre Jülich, Jülich, Germany

T- or Y-shaped microfluidic channels are chemical measurement devices that have become popular in recent years. Using such microdevices gives a better control of the fluid behavior and the chemical reaction kinetics, due to the small quantity of fluid.The concept of the T-Sensor as state-of-the-art is used to determine coupled processes of diffusion and reaction within a small-scaled system on a ...

A Magnetically Driven Micro-Mixing Device and its Numerical Analysis

A. M. Morega1, J. C. Ordonez2, and M. Morega1
1Politehnica University of Bucharest, Bucharest, Romania
2Florida State University, Tallahassee, FL, USA

In this paper, we present a FEM model of a mixing MEMS μTAS device. A quasistatic magnetic field, produced by sequentially switched DC currents advected through conductors embedded in the device substrate beneath the flow channel, is used to mix the working magnetic fluid, while it is forced to flow through a rib walled channel. The body forces in the magnetized fluid perturb the otherwise ...

Simulation of Topology Optimized Electrothermal Microgrippers

O. Sardan[1], D. Petersen[1], O. Sigmund[2], and P. Boggild[1]
[1]DTU Nanotech, Denmark
[2]DTU Mechanical Engineering, Denmark

In this work, electrothermal microgrippers designed using topology optimization are modeled. The microgrippers are composed of two 5 μm-thick polysilicon actuators facing each other. The gap between the actuators are 2 μm in the initial state and the microgrippers are able to both fully close and further open this gap. The operation principle of the actuators is quite similar to that of a ...

Simulation of Deformed Solid Particles in Constrained Microfluidic Channel

M. Cartas-Ayala[1], R. Karnik[1]
[1]Massachusetts Institute of Technology, Cambridge, MA, USA

Characterization of particles has numerous applications in science and diagnostics. Recently, particle passage through constrained microchannels has been proposed to characterize particles based on their passage velocity. Nevertheless, there is no clear understanding of how the physics in this system interact. Here we quantify the effects of the flow around the particle by simulating the passage ...

Hybrid Design Electrothermal Polymeric Microgripper with Integrated Force Sensor

V. Vidyaa[1]
[1]Jawahar Engineering College, Affliated to Anna University, Chennai, Tamil Nadu, India

Microgrippers are typical MEMS devices used to pick, hold and transport micro-objects. Microgrippers are widely used in the field of micro-assembly, micro-surgery and manipulation of micro-particles. Thermal microgrippers are widely used for large displacement, high accuracy and repeatability. In this paper, a hybrid design electrothermal microgripper (Figure 1), based on Poly Methyl ...

Nanoscale Structure Design in EM Fields Using COMSOL Multiphysics

J. Yoo[1], H. Soh[2], J. Choi[3], S. Song[4]
[1]Department of Mechanical Engineering, Yonsei University, Korea
[2]Hyundai Motor Co., Korea
[3]Samsung Electronics Co., Ltd., Korea
[4]Mando Co., Korea

Nanoscale structural analysis and design is presented. All the simulations are carried out using a finite element solver and optimization is performed using parameter and topology optimization schemes. It is concluded that COMSOL is effective for analysis and design of nanoscale structure design in electromagnetic field and it may be combined with several optimization methods to improve system ...

Numerical and Experimental Evaluation for Measurement of a Single Red Blood Cell Deformability Using a Microchannel and Electric Sensors

K. Tatsumi[1]
[1]Kyoto University, Kyoto City, Kyoto, Japan

An electric micro-resistance sensor that can continuously measure the deformability of a single red blood cell (RBC) in a microchannel and a numerical model that can simulate the resistance and capacitance of the cell membrane and cytoplasm are developed and improved. The resistance signal pattern between the electrodes is measured to evaluate the feasibility of the present sensor, using the ...

Particle Flow Control by Magnetically Induced Dynamics of Particle Interactions

F. Wittbracht[1], A. Weddemann[1], A. Auge[1], and A. Hütten[1]

[1]Department of Physics, Thin Films and Physics of Nanostructures, Bielefeld University, Bielefeld, Germany

In this work, we show that dipolar magnetic coupling can be used to control the particle flow through microfluidic structures without changing the state of motion of the carrier liquid. Also no external magnetic gradient fields are employed; the total external magnetic force applied is therefore zero. The theoretical idea will be tested experimentally. Here, additional effects originating from ...

Quick Search