Artigos Técnicos e Apresentações

Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abramgem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

Design of Traveling Wave Ultrasonic Vibration Disk for Nano-particles in Liquid Dispersion

J. Muraoka, and T. Suzuki
Yamagata Research Institute of Technology

The traveling wave ultrasonic vibration disks for dispersion of particles were designed by using of FEM analysis. The vibration disks are required specific vibration pattern, which contains three nodal lines. The vibration disk thickness was calculated to be matched the resonance frequency of bolted langevin type transducer and the specific vibration pattern. The alignment of the transducer was ...

Evaluation of electric impedance spectra for single bio-cells in microfluidic devices using combined FEMLAB/ELDO modeling

Senez, V., Arscott, S.

This paper describes a simple method to predict the electrical impedance spectrum of single and cultured cells in micro-devices. It can be used for the rapid design of micro-sensors as well as for more fundamental studies about the interactions of electric fields with bio-cells. The finite element (FEMLAB) and the transport lattice (ELDO) methods are coupled through the MATLAB environment for ...

Design of High Performance Condenser Microphone Using Porous Silicon

S. Suganthi[1], M. Anandraj[2], and L. Sujatha[1]
[1]Department of Electronics & Communication Engineering, Rajalakshmi Engineering College, Chennai, India
[2]Department of Physics, Rajalakshmi Engineering College, Chennai, India

Porous Silicon (PS) can easily be formed by electrochemical etching of silicon in HF based electrolytes at room temperature. Since, PS is compatible with silicon IC technology; it finds lot of applications in the fabrication of MEMS devices. In the current study, we discuss the design of a condenser microphone using a Silicon/ Porous Silicon composite membrane as a movable plate. The performance ...

Dimensioning simultaneous polymerase chain reactions (PCR) in capillary tubes

Berthier, J., Chatelain, F.

Polymerase chain reaction is the most usual way to amplify DNA strands for detection and biorecognition. However efficient biorecognition requires to perform many different PCRs at the same time. We present here a new concept of simultaneous PCRs in capillary tubes and more specifically the dimensioning of such a microsystem. The concept consists in performing different PCRs in annular rings ...

A microfluidic assay design for real-time bacterial chemotaxis studies

Koser, H., Kaya, T., Mao, L.
Department of Electrical Engineering, Yale University, New Haven, CT

We have developed a novel, multilayered microfluidic chamber that enables the realtime quantitative study of chemotaxis on virtually all types of motile cells. In this paper, we present a FEMLAB modeling study of the 3D chamber design, including a consideration of each device iteration that successively led to the eventual design. The final chamber design is able to create and maintain an ...

Optimization of the Temperature Distribution in a Chemical Microreactor using a Multi-Segment Integrated Thin Film Heater

T.R. Henriksen, S. Jensen, U. Quaade, and O. Hansen
Technical University of Denmark

COMSOL Multiphysics has been used to study the effect of different heater design parameters on the temperature distribution in a chemical microreactor. The primary objective of the simulations has been to optimize the temperature uniformity inside the reaction chamber. In the simulations, special attention has been given to how the number, positions and widths of the heater strips relate ...

Perspectives of Thermo-electro-mechanical Micro Actuators for Micro Switch Applications: Design and Simulation

M. Matmat, M. Al Ahmad, and J. Y. Fourniols
Laboratoire d'Analyse et d'Architecture des Systèmes (LAAS-CNRS), Toulouse, France

In this work, thermo-mechanical simulations employing a 3D finite element analysis (FEA) of a current driven V-shaped actuator is presented. The structure's hot arms consist of polysilicon, which was used as the active material for deflection due to the Joule effect.COMSOL Multiphysics with stationary and parametric solvers was used to calculate the resulting deflection when current is applied. ...

Simulation of Thermal Sensor for Thermal Control of a Satellite using COMSOL

G. Mangalgiri
BITS Pilani
Zuarinagar, Goa

Spacecrafts have a prime necessity that their temperature be controlled. This paper presents the simulation of a mechanically actuated field effect transistor that is used in a thermal system. It comprises of a composite beam, a piezoelectric substrate and a field effect transistor. The temperature rise causes a deflection in the composite beam thereby causing it to impinge on the piezoelectric ...

Numerical and Experimental Evaluation for Measurement of a Single Red Blood Cell Deformability Using a Microchannel and Electric Sensors

K. Tatsumi[1]
[1]Kyoto University, Kyoto City, Kyoto, Japan

An electric micro-resistance sensor that can continuously measure the deformability of a single red blood cell (RBC) in a microchannel and a numerical model that can simulate the resistance and capacitance of the cell membrane and cytoplasm are developed and improved. The resistance signal pattern between the electrodes is measured to evaluate the feasibility of the present sensor, using the ...

Motion of Uncharged Particles in Electroosmotic Flow through a Wavy Cylindrical Channel

N. Qudus[1], T. Mahbub[1], S. A. Ali[1], and M. Shajahan[1]
[1] Bangladesh University of Engineering and Technology, Dhaka Bangladesh

A finite element model is employed to describe the electric potential distribution and electroosmotic flow field inside a wavy cylindrical channel. The model uses coupled Laplace and Poisson-Boltzmann to evaluate the electric potential distribution inside the channel. It also contains continuity and Navier–Stokes equations for the solution of fluid flow. A particle trajectory model was ...

Quick Search