Artigos Técnicos e Apresentações

Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abramgem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

Second Harmonic Generation in Noble Metal Nanoparticles

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet
Laboratoire de Spectrométrie Ionique et Moléculaire, Université Claude Bernard Lyon1, Villeurbanne, France

In this presentation we present our results from modeling the second harmonic generation in noble metal nanoparticles. The model results are compared with experimnental results in order to validate the model.

Designing Silver Nanowires Invisible Cloak Based on Effective Medium Approach

Y. Xu
Soochow University, Suzhou, China

In this section, we design an invisible cloak using the composite medium of silver nanowires with elliptical cross-sections embedded in a polymethyl methacrylate host. Under the guidance of an analytical effective medium approach, we use the parameter retrieval method to design a well-performed invisible cloak, based on an empirical revised version of the reduced cloak. The cloak is numerically ...

Simulation of Field Enhancement in Anisotropic Transition Metamaterials using COMSOL

A. Pandey, and N. Litchinitser
The State University of New York at Buffalo
Buffalo, NY

Transition metamaterials constitute a new class of engineered materials which have material properties tailored in such a manner that the refractive index gradually changes from positive to negative. An important question is what happens at the interface of a positive and negative index material. In this work, we design anisotropic transition materials using metal-dielectric layers and study ...

Super-resolving Properties of Metallodielectric Stacks

N. Katte[1], J. Haus[1], J.B. Serushema[1], and M. Scalora[2]
[1]University of Dayton, Dayton, OH, USA
[2]Charles M. Bowden Research Center, Redstone Arsenal, AL, USA

We show that diffraction can be suppressed in a one-dimensional metallodielectric stack (MDS) at visible wavelengths to achieve super-resolution imaging. In our calculations we use two popular techniques, which can be adapted to investigate the imaging properties of MDSs. The two methods are the transfer matrix method (TMM) and the Finite element method based software, COMSOL Multiphysics. The ...

The Optical Properties of a Truncated Spherical Cavity Embedded in Gold

A. Pors[1], O. Albrektsen[2], S.I. Bozhevolnyi[2], and M. Willatzen[1]
[1]Mads Clausen Institute, University of Southern Denmark, Sønderborg, Denmark
[2]Institute of Sensors, Signals and Electrotechnics, University of Southern Denmark, Odense, Denmark

The use of plasmonic effects to dramatically enhance the electromagnetic field near the surface of a metallic nanostructured surface has grown into a large research area in the effort to take advantage of the surface enhanced field. In this paper the electromagnetic field near a nano-sized truncated spherical cavity embedded in a gold substrate is investigated and modeled in 3D with COMSOL ...

Design for an Invisibility Cloak

T. Ochiai
Toyama Prefectural University
Japan

In order to design invisibility cloak, we use two different type of spaces: Physical space and Mathematical space. This paper is in Japanese.

Magnetic Liquids for Lab-on-a-chip and Rapid Diagnostics Applications

H. Köser
Yale University

In this presentation we outline our recent work on Magnetic Liquids, and the great number of application areas these are used. Ferrofluids are nanometer sized magnetic particles, covered by a surfactant, suspended in a carrier medium compatible with the surfactant material. Ferrofluids are applicable to a great and ever increasing number of application areas, such as: • Liquid Seals and ...

Complex K-Bands Calculation for Plasmonic Crystal Slabs by Means of Weak Formulation of Helmholtz's Eigenvalue Equation

G. Parisi[1], P. Zilio[1], F. Romanato[1]
[1]University of Padova, Padova, Italy

We present a Finite Element Method (FEM) to calculate the complex valued k(?) dispersion curves of a photonic crystal slab in presence of both dispersive and lossy materials. In particular the method can be exploited to study plasmonic crystal slabs. We adopt Perfectly Matched Layers (PMLs) in order to truncate the open boundaries of the model, including their related anisotropic permittivity and ...

Charge Carrier Motion in Semiconductors

B. Kreisler, G. Anton, J. Durst, and T. Michel
Physikalisches Institut Abt. IV, Erlangen

The motion of free charge carriers in semiconductors was simulated using the convection and diffusion module in COMSOL. The focus of this work is the sensor layer of the Medipix2 x-ray detector, in our case made of silicon. The charge cloud generated by photon interactions within the sensor material moves through the material due to an applied electric field. The charges are collected by the ...

Modeling VRALA,The Next-Generation Actuator For High-Density, Tick Secondary Mirrors For Astronomy

C. Del Vecchio[1], G. Agapito[1], G. Tomassi[2], and E. De Santis[2]
[1]National Institute for Astrophysics, Arcetri Astrophysical Observatory, Firenze, Italy
[2]University of Cassino, Cassino, Italy

The next-generation of Extremely Large Telescopes adaptive optics systems require high-order, long-stroke, quite large deformable mirrors. Higher forces and greater actuator densities than the ones provided by the current technology are needed, still maintaining the severe accuracy and bandwidth requests. Based on a very simple magnetic circuit, providing a compact device, the VRALA actuator ...

Quick Search