Artigos Técnicos e Apresentações

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Measuring the Spectra of Metamaterials at an Oblique Incidence

X. Ni[1,2], Z. Liu[1,2], and A.V. Kildishev[1,2]
[1]School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana, USA
[2]Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana, USA

The emergence of electromagnetic metamaterials has given rise to a variety of fascinating applications, including the perfect lens and the optical cloaking device. For a long time the study of the properties of metamaterials was limited to normal incidence only. However, it is extremely important to know the behavior of metamaterials especially in the area of imaging. In this paper, we use COMSOL ...

Modeling 2D and 3D of Hybrid Laser Nd:Yag - MIG Welding Processes

E. Le Guen[1], R. Fabbro[1], F. Coste[1], M. Carin[2], and P. Le Masson[2]
[1]LALP (CNRS)/GIP GERAILP, Arcueil, France
[2]LIMATB, Université de Bretagne Sud, Lorient, France

Hybrid laser-MIG arc welding has very interesting advantages compared to laser welding or arc welding used separately. It is known that improvement of productivity results in higher welding speeds, thicker welded materials, joint fit-up allowance, better stability of molten pool, and improvement of joint metallurgical quality. In order to use these techniques efficiently in industrial production, ...

Near-fields in Arrays of Triangular Particles: Coupling Effects and Field Enhancements

M. Goncalves[1], T. Makaryan[2], G. Papageorgiou[3], U. Herr[3], and O. Marti[1]
[1]Ulm University - Inst. of Experimental Physics, Ulm, Germany
[2]Yerevan State University, Yerevan, Armenia
[3]Ulm University - Institute of Micro and Nanomaterials, Ulm, Germany

Surface enhanced Raman scattering (SERS) investigations of silver and gold triangular nanoparticles reveal strong field enhancements at the corners of the particles. Though the measurements were done at wavelengths far from the surface-plasmon resonance of the particles, large field enhancements can be generated by near-field coupling between the triangular particles and smaller metal ...

Simulation Based Approach to Fluorescence Diffuse Optical Tomography

R. Singh, and I. Jose
BITS Pilani Goa Campus
Goa, India

Diffuse Optical Tomography (DOT) uses Near Infra-red (NIR) light to monitor physiological changes in internal organs. NIR light being less energetic in nature can be used for continuous monitoring of tumor infected biological tissue, neonatal brain and many such applications where high energy radiation can cause severe damage. The forward problem of DOT, which involves obtaining of the ...

A Study on the Suitability of Indium Nitride for THz Plasmonics

A. Shetty[1], K. J. Vinoy[1], S. B. Krupanidhi[2]
[1]Electrical Communication Engineering, Indian Institute of Science, Bangalore, India
[2]Materials Research Centre, Indian Institute of Science, Bangalore, India

As interest in the electromagnetic spectrum expands towards the infrared and terahertz range, the distinct advantages of using semiconductors instead of metals for plasmonic applications must be understood. Plasmonic resonances in gold (Au) and indium nitride (InN) gratings are studied, in the terahertz (?=30µm) regime. The electromagnetic properties of Au and InN are described by the Drude ...

Property and Performance Prediction of Meta Composites for Novel Applications

C. Thiagarajan[1]
[1]ATOA Scientific Technologies Private Limited, Whitefield, Bangalore 560066, India.

Metacomposites are new class of materials with unusual properties that can be engineered using existing materials with usual properties. The unusual properties of metacomposites are derived from the structure, analogues to atomic arrangement in crystal lattice. These material exhibits unusual negative refraction type behavior to electromagnetic wave propagation and thus enables novel ...

Pros and Cons of Running COMSOL Multiphysics® Touch-Sensor Simulations on Amazon Web Services™

A. Gourevitch[1]
[1]Cypress Semiconductor Corp., San Jose, CA, USA

We report an implementation of parallel computing on Amazon Web Services™ (AWS) for touch-sensor modeling. COMSOL Multiphysics® was used to simulate an electromagnetic field distribution in a capacitive sensor assembly. Multiple COMSOL jobs were deployed on separate AWS instances and were executed in parallel. The simulation results indicate that implementation of parallel computing for COMSOL ...

Forces and Heating in Plasmonic Particles

M. Gonçalves[1], O. Marti[1]
[1]Ulm University - Inst. of Experimental Physics, Ulm, Germany

Plasmonic resonances arising in gold nanoparticles lead to strongly localized near-field enhancements. These enhancements generate strong field gradients that can be exploited in particle trapping. On the other hand plasmonic resonances lead to enhanced absorption and heat generation. Gold nanoparticles have been used to kill cancer cells based on plasmonic heating. We have investigated the ...

Implementation of a Paraxial Optical Propagation Method for Large Photonic Devices

J.E. Toney[1]

[1]Pennsylvania State University Electro-Optics Center, Freeport, Pennsylvania, USA

We demonstrate the use of COMSOL Multiphysics with MATLAB to model signal generation in wide-bandgap semiconductor radiation detectors. A quasi-hemispherical detector design is compared with a simple, planar detector. Results show that the quasi-hemispherical design can simply and effectively compensate for the poor hole transport of most compound semiconductor materials. In this paper we present ...

Towards Modelling Semiconductor Heterojunctions

R. Millett[1], J. Wheeldon[2], T. Hall[1], and H. Schriemer [1,2]
[1] Centre for Research in Photonics, School of Information Technology and Engineering, University of Ottawa, Canada
[2] Centre for Research in Photonics, Dept. of Physics, University of Ottawa, Canada

A 2D multiphysics model has been developed to simulate heterojunctions separating abruptly doped semiconductor layers of different dopant concentrations. Numerical results are presented for the case of nN, pN and PpN heterojunctions, and a general procedure for simulating multiple heterojunctions is described.

Quick Search