Artigos Técnicos e Apresentações

Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abramgem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

FEM Study on Contactless Excitation of Acoustic Waves in SAWDevices

A. K. Namdeo[1], N. Ramakrishna[2], H. B. Nemade[1,2], and R. P. Palathinkal[1]

[1] Department of Electronics and Communication Engineering, Indian Institute of Technology Guwahati, Assam, India
[2] Centre for Nanotechnology. Indian Institute of Technology Guwahati, Assam, India

In this paper a finite element method(FEM) study of a surface acoustic wave (SAW)device excited by electrostatic coupling method is performed by using COMSOL Multiphysics. We have modeled a Rayleigh wave type SAW device by choosing YZ Lithium niobate as the substrate. The effect of external radio frequency (RF) field to the SAW device is analyzed. The effect of distance between the contactless ...

Analyzing the Influence of Electric Field on Flame Through  Electro-Hydrodynamics

S. Mitra[1], P. Sharma[2], M. Godbole[2], and M. Kumar KM[2]
[1] Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India

[2] GE Global Research, Bangalore, Karnataka, India

The effects of electric fields on combustion flames have been studied by using several types of experimental techniques as well as few numerical methods. The flame is influenced by the electric field mainly due to the charges present as a result of chemical reactions that take place in the flame. From earlier experiments it was established that the electrical power required to do so is very less ...

Modeling the Behavior of Phased Arrays in Brain Tissue: Application to Deep Brain Stimulation

V. Valente[1], A. Demosthenous[1], and R. Bayford[2]

[1]Department of Electronic & Electrical Engineering, University College London, London, United Kingdom
[2]Department of Natural Sciences, Middlesex University, London, United Kingdom

Deep Brain Stimulation (DBS) is a therapeutic tool used for a number of neurological disorders including chronic pain, incontinence and movement disorders, such as Parkinson’s disease. DBS consists of the low-frequency stimulation of an area of the brain, known as basal ganglia. The stimulation is provided by clinical implant, consisting of a pulse generator and an electrode lead ...

Helium Two-Phase Flow in a Thermosiphon Open Loop

Bertrand Baudouy
Head of the Cryogenics R&D Group, CEA Saclay, France

Outline of presentation: Missions of SACM (Accelerator, Cryogenics and Magnetism Division) Context : The Large Hadron collider at CERN, Geneva Cooling large superconducting magnet Thermosiphon open loops for cooling superconducting magnets Experimental facility and ranges of the study COMSOL Multiphysics Modeling Results with COMSOL Multiphysics Comparison with experimental ...

Benefits of COMSOL Multiphysics® Version 4

Ed Fontes
Chief Technology Officer, COMSOL

Ed Fontes is CTO at COMSOL with specific interest in the transport-reaction products. He has 14 years experience of modeling transport phenomena in industry and 6 years of supervising research projects in Academia. Ed Fontes received his PhD in Electrochemical Engineering from the Royal Institute of Technology (Stockholm, Sweden) in 1995.

Modeling the Rheology of Liquid Detergents

Vincenzo Guida
R&D Process Design Principal Engineer, Procter & Gamble, Italy

Outline of presentation: Comsol is a very flexible platform, ideal to model rheology modification under flow Analogy with reactive flows allows modeling of both thixotropy and gelation with decent level of accuracy and predictability It is possible, to a certain extent, to use 1D rheology to extrapolate 3D behavior ---------------------------------- Keynote speaker's biography:Vincenzo ...

Transient Heat Transfer Effects from a Flapping Wing

Lind, R.J., Abedian, B.
Department of Mechanical Engineering Tufts University, Medford, Massachusetts

This presentation is a numerical study of fluid flow around a two-dimensional rigid flapping plate and its effects on the resultant transient heat transfer effects on the solid interface. In this study, a flat inflexible thin plate surrounded by air undergoes sinusoidal angular motion from one end while the other end is kept stationary, simulating a flapping motion. The two-dimensional ...

Microstimulation in The Brain: Does Microdialysis Inuence the Activated Volume of Tissue?

D. Krapohl[1][3], S. Loeffler[2], A. Moser[2], and U.G.Hofmann[1]

[1]Institute for Signalprocessing, University of Luebeck, Lübeck, Germany
[2]Institute for Neurology, University of Luebeck, Lübeck, Germany
[3]Department of Information Technology and Media, Mid Sweden University, Sundsvall, Sweden

Deep Brain Stimulation (DBS) has been established as an effective treatment for Parkinson's disease and other movement disorders. The stimulation is currently administered using tetrode-macroelectrodes that target the Subthalamic Nucleus (STN). This often leads to side effects which bias the surrounding areas, e.g. the speech centre. Targeting a specific brain region can better be achieved with ...

FEMLAB as a Front-end for Large-scale Acoustic Modeling Parallelized Wave Basis Solver for the 3D Helmholtz Problems

Huttunen, T.1, Malinen, M.1, Vanne, A.1, Monk, P.2 1 University of Kuopio, Department of Applied Physics, Kuopio, Finland
2 University of Delaware, Department of Mathematical Sciences, Newark, DE, USA

We introduce an extension for FEMLAB's acoustic mode which uses the ultra-weak variational formulation (UWVF) method for solving 3D Helmholtz problems. The solver, calledWaveller, uses FEMLAB's graphical interface for creating geometries, generating meshes, post-processing and visualization. However, the solution of acoustic wave problems using the UWVF significantly reduces the computational ...

Analysis of Cell Deformation with FEMLAB

El-Khatib, N.1, Huc, N.2, Goldberg, Y.3, Cedex Martiel, J.L.1
1 TIMC Laboratory, UMR CNRS 5525, Faculty of Medicine, La Tronche
2 COMSOL, Grenoble
3 INSERM EMI 01-08, Grenoble University Hospital, Grenoble

We present a simplified model of biological cells including a first layer, corresponding to the membrane and the actin cortex and a second one, representing the cell cytoplasm. The membraneactin ensemble is governed by the Navier equations while the cytoplasm is assimilated to a viscous fluid, described by the Navier-Stokes system. At the inner boundary, between the cortex and the cytoplasm, ...

Quick Search

2731 - 2740 of 3230 First | < Previous | Next > | Last