Artigos Técnicos e Apresentações

Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abramgem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

Development of the Service Frame for SBS Tracker GEM and TENDIGEM Development

F. Noto[1], E. Cisbani[2], F. Librizzi[1], F. Mammoliti[3], C.M. Sutera[1]
[1]Istituto Nazionale Fisica Nucleare - Sezione di Catania, Catania, Italy; Dipartimento di Fisica ed Astronomia, Università di Catania, Catania, Italy
[2]Istituto Nazionale Fisica Nucleare - Sezione di Roma, Roma, Italy; Istituto Superiore di Sanità, Roma, Italy
[3]Istituto Nazionale Fisica Nucleare - Sezione di Catania, Catania, Italy; Dipartimento di Fisica ed Astronomia, Università di Catania, Catania, Italy

The Gas Electron Multiplier (GEM) technology has been proven to tolerate rate larger than 50 MHz/cm² without noticeable aging and to provide the sub-millimeter resolution on working chambers up to 45x45 cm² [1]. A new GEM tracker is under development for the upgrade of the SBS spectrometer in Hall A at Jefferson Lab. The chambers of the tracker have been designed in a modular way: each chamber ...

Accelerating R&D with COMSOL: A Personal Account

Erik Birgersson[1]

[1]Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore

This presentation gives an account of how COMSOL Multiphysics® software has helped to accelerate research and development. It has been used to simulate energy systems such as fuel cells, biomedical systems such as hydrogels and human skin, and monolithic catalytic converters. Each of these systems requires a mathematical model that can accurately represent the relevant physics, and which can be ...

Is Experimentation More Intuitive?

R. Venkataraghavan
Unilever R&D
Bangalore, India

Venkataraghavan is the Discover Category Leader, Water, working at the interface of Science, Technology and Business, for developing solutions and products for water purification at Unilever R&D, Bangalore. He joined Unilever in 2002 and earlier worked in interfacial science, materials science and electrodynamics for the Laundry Category. Venkataraghavan also had a stint with Unilever Technology ...

Benchmark of COMSOL vs. ROXIE Codes for the Calculation of a Particle Accelerator Quadrupole

I. Rodriguez, and J. L. Munoz
ESS Bilbao
Bilbao, Spain

The field quality requirements of most particle accelerator magnets are very tight and, therefore, very precise simulations are needed to accurately calculate these devices. CERN\'s ROXIE code is widely used as a reference software to calculate normal conducting and superconducting magnets for particle accelerator applications. ROXIE uses the full vector potential coupled to the BEM-FEM method ...

Chaotic Behavior of the Airflow in a Ventilated Room

A.W.M. van Schijndel[1]
[1]Eindhoven University of Technology, Eindhoven, The Netherlands

Chaotic systems may lead to instability, extreme sensitivity and performance reduction. Therefore it is unwanted in many cases. Due to these undesirable characteristics of chaos in practical systems, it is important to recognize such a chaotic behavior. The existence of chaos has been discovered in several areas during the last 30 years. However, there is a lack of studies in relation with ...

Computation of Space-Time Patterns via ALE Methods

V. Thümmler1, and A. Weddemann2
1Department of Mathematics, Bielefeld University, Bielefeld, Germany
2Department of Physics, Bielefeld University, Bielefeld, Germany

Partial differential equations which exhibit solutions that are spatial temporal patterns are often found in biological and chemical systems, e.g. when describing pattern formation in reaction-diffusion systems.Special classes of such patterns are relative equilibria and relative periodic orbits, which are solutions that in an appropriately co-moving frame of reference are stationary and ...

Multiphysics Simulations in Complex 3D Geometry of the High Flux Isotope Reactor Fuel Elements using COMSOL

J. Freels, and P. Jain
Oak Ridge National Laboratory
Oak Ridge, TN

A current research and development project is ongoing to convert the operating High Flux Isotope Reactor (HFIR) of Oak Ridge National Laboratory (ORNL) from highly-enriched uranium (HEU U3-O8) fuel to low-enriched uranium (LEU U-Mo) fuel. Because LEU HFIR-specific testing and experiments will be limited, we are relying on COMSOL to provide the needed multiphysics simulation capability to validate ...

Making Cartograms and Using them for Data Acquisition

P. Mercure[1], and R. Haley[2]
[1]The Dow Chemical Company, Midland, MI
[2]ATM Research, Midland, MI

We demonstrate cartogram construction, where a geographical map is distorted to represent some measure, for example population, while trying to keep the shape of regions recognizable. We then apply this cartogram construction technique to optimize thermocouple locations. A heat generation and conduction model is used initialize the cartogram construction algorithm. A uniform distribution of ...

Using Advanced FEMLAB Features for SHA-FEM Coupling

Kildishev, A., Chettiar, U.
School of Electrical and Computer Engineering, Purdue University

Spatial Optical Analysis (SHA) of electromagnetic fields is a useful tool in analytical and numerical analysis of complex electromagnetic sources. A mathematical background for setting the Dirichlet boundary condition in the Finite Element Method (FEM) is shown.

FEMLAB modules for bioengineering education

Butler, P.J.1, Ferko, M.C.2
1 Department of Bioengineering, Penn State University
2 Stryker Orthopedics Corporation

As biologists uncover the structural and functional complexity of living organisms, it is increasingly clear that mathematical models are needed to synthesize experimental data and predict biological responses to external stimuli. Bioengineers are well-suited to develop such models and to add mechanics, fluid flow and other physical cues to the understanding of biological structure and ...

Quick Search