Artigos Técnicos e Apresentações

Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abramgem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

Design and Simulation of 3D MEMS Piezoelectric Gyroscope using COMSOL Multiphysics®

T.Madhuranath[1], R.Praharsha[1], Dr.K.Srinivasa Rao[1]
[1]Lakireddy Bali Reddy College of Engineering, Mylavaram, Andhra Pradesh, India

MEMS is the leading technology which combines both electronic and mechanical devices on a single microchip. Tracing the position of the object is an important problem in engineering. This can be addressed by Gyroscopes. These sensors are used to find orientation and angular velocity. This paper focuses on 3D MEMS Piezoelectric Gyroscope. COMSOL Multiphysics® is used for designing and ...

Determination of Mechanic Resistance of Osseous Element Through Finite Element Modeling

E. Isaza[1], E. Salazar[1], L. Florez[1]
[1]Universidad Tecnológica de Pereira, Pereira, Risaralda, Colombia

The consequences of hip fracture and femoral fracture are widely known. The mechanical strength of the femur varies in every person, but it is possible to predict the mechanical resistance with parameters like density, dimensions and mineral content. This paper uses different models and empirical studies to determine the mechanical properties of the human femur, developing isotropic and ...

Mathematical modeling of nanomaterials

Strauss, D.J., Trenado, C.
Institute of New Materials, Saarbrücken

Mathematical modeling at the Institute of New Materials has played a crucial role in supporting the manufacturing and design of new technologies of nanomaterials, whose applications range from transportation, electronics and optics engineering to environmental sciences. In this paper, we focus our attention to two mathematical models together with their corresponding FEMLAB simulations: The ...

Fluid-Structure Interaction Analysis of a Peristaltic Pump

N. Elabbasi, J. Bergstrom, and S. Brown
Veryst Engineering, LLC.
Needham, MA

Peristaltic pumping is an inherently nonlinear multiphysics problem where the deformation of the tube and the pumped fluid are strongly coupled. We used COMSOL Multiphysics to investigate the performance of a 180 degree rotary peristaltic pump with two metallic rollers, and an elastomeric tube pumping a viscous Newtonian fluid. The model captures the peristaltic flow, the flow fluctuations ...

Novel Simulation of a Voltage-Driven Electro-Thermo-Mechanical MEMS Self-Oscillator

S. Ouenzerfi [1,2,3], H.A.C. Tilmans [2], S. El-Borgi[3,4], X. Rottenberg [2]
[1] KACST-Intel Consortium Center of Excellence in Nano-manufacturing Applications (CENA), Riyadh, KSA
[2] IMEC, Leuven, Belgium
[3] Applied Mechanics and Systems Research Laboratory, Tunisia Polytechnic School, University of Carthage, La Marsa, Tunesia
[4] Texas A&M University at Qatar, Mechanical Engineering Program, Engineering Building, Doha, Qatar

This paper presents the modeling and simulation of electro-thermo-mechanical self-oscillators, an emerging type of M/NEMS-enabled timing devices in which sustaining electronic amplifiers are not required for their operation. Indeed, they realize amplification in the mechanical domain and feedback by crossing three physical domains: electrical, thermal and mechanical. In a previous work [1], we ...

Modeling Linear Viscoelasticity in Glassy Polymers using Standard Rheological Models

M. Haghighi-Yazdi, and P. Lee-Sullivan
University of Waterloo
Waterloo, ON

In this study, a capability has been developed for modeling the linear viscoelastic behaviour of a glassy polymer using COMSOL Multiphysics®. The two rheological models by Maxwell and Kelvin-Voigt were used for modeling stress relaxation and creep loading behavior, respectively, of a typical gas pipe under two modes of plane stress and plane strain. An advantage of the developed model is its ...

Cryogenic Design for the SAFARI Test-Setup Calibration Source

C. de Jonge[1], M. Eggens[1], W. Laauwen[1], P. Dieleman[1], G. Keizer[1]
[1]SRON Netherlands Institute for Space Research, Utrecht, The Netherlands

For the SAFARI Imaging Spectrometer, part of the SPICA satellite payload, a Calibration Source is under development. Challenges in the design include the low cooling power (few mW) available at cryogenic temperatures. COMSOL Multiphysics® simulations were used extensively in the design process of the calibration source, allowing optimization of the thermal, electro-magnetic and mechanical ...

The Use of COMSOL Multiphysics® for Studying the Fracture Pressure of Rectangular Micro-Channels Embedded in Thin Silicon Substrates

K. Howell[1], H. Georgiou[2], P. Petagna[3], G. Romagnoli[3]
[1]George Mason University, Fairfax, VA, USA
[2]Cyprus University of Technology (C.U.T), Limassol, Cyprus, EU
[3]CERN - The European Organization for Nuclear Research, Geneva, Switzerland, EU

The thermal management of silicon detectors and related electronics through micro-structured silicon cooling plates is gaining considerable attention for high precision particle trackers. Micro-fluidic circuits are etched in a silicon wafer, which is then bonded to a second wafer to obtain a cooling circuit. Because mono-crystalline silicon is structurally close in characteristics to brittle ...

A Study of the Effects of Mounting Supports, and Dissipation on a Piezoelectric Quartz Double-Ended Tuning Fork Gyroscope

G. Choi[1], Y. Yong[1]
[1]Rutgers University, New Brunswick, NJ, USA

A COMSOL model of a piezoelectric quartz double ended tuning fork gyroscope was implemented. The gyroscope has two detection modes; the first mode detects the angular velocity about a z-axis perpendicular to the tuning fork plane (x-y plane), while the second mode detects the angular velocity about a y-axis that is the longitudinal axis along the length of the tuning fork. Eigenfrequency analyses ...

Scale-up Design of Ultrasound Irradiator for Advanced Oxidation Process (AOP) Using COMSOL Multiphysics® Simulation

Z. Wei[1]
[1]The Ohio State University, Columbus, OH, USA

Ultrasound is a promising green technology for the advanced oxidation process (AOP) since it adds no chemicals to the treated water. In this paper, COMSOL Multiphysics® was used as a tool to design and characterize an ultrasound irradiator with multi-stepped configuration, which aims to overcome disadvantages of typical irradiators and to enhance contaminant removal in large-scale water ...

Quick Search