Artigos Técnicos e Apresentações

Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abramgem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

Structural and Geomechanics Modeling of a Railroad Bridge

H. Diaz-Alvarez, R. Costley, D. Whitlow, M. McKenna, C. Williamson, and O. Taylor
US Army Engineer & Development Center
Vicksburg, MS

Previous studies have determined that bridges radiate acoustic energy in the infrasonic frequency range. Initial interest in this topic was the result of trying to identify sources of infrasound recorded at stations deployed near bridges. A Finite Element model has been developed for a Pratt truss railroad bridge located at Ft. Leonard Wood, MO. The model consists of 3-D Euler beam elements ...

Modeling and Simulation of Circular and Square Diaphragm Absolute Micro Pressure Sensors using COMSOL

M. Sundaram[1], A. Simha[2], S M. Kulkarni[3], and S. Bhat[4]
[1]Department of ICE, Manipal Institute of Technology, Manipal, India
[2]Department of Mechatronics, National Institute of Technology, Suratkal, India
[3]Department of Mechanical, National Institute of Technology, Suratkal, India
[4]Department of E&C, Manipal Institute of Technology, Manipal, India

The aim of this paper is to model and simulate a Circular and Square diaphragm absolute micro pressure sensors. With the applied pressure, the change in deflection and stress pattern of the diaphragm is analytically determined. The structures are then simulated using COMSOL Multiphysics®. The results obtained from analytical equations are compared with simulated results. The range and ...

Design of an Autonomous Millimeter Scale Robot Using COMSOL

M.E. Karagozler, and S.C. Goldstein
Carnegie Mellon University, Pittsburgh, PA, USA

In this work, we describe the design of a new type of microrobot, the Catom, which is the basic unit of the modular robotic system Claytronics. The Catom is an autonomous, free standing, three dimensional microrobot, which uses electrostatically coupled electrodes to harvest power, actuate, and adhere to other robots. The Catoms are fabricated using lithography based fabrication techniques. The ...

Response of Structures to Transient Loading

R.D. Costley, H. Diaz-Alvarez, and M.H. McKenna
U.S. Army Corps of Engineers, Washington, DC, USA

Large infrastructure, such as bridges, emits signals at their natural or driven frequencies of vibration, providing an indication of the structural condition that can be monitored without a need to physically touch the structure. In this presentation, a benchmark case for the transient excitation of a simple structure is investigated: the COMSOL and analytical solutions are compared for the ...

3D Multiphysics Analyses to Support Low Enriched Uranium (LEU) Conversion of HFIR - new

P. K. Jain[1], J. D. Freels[1]
[1]Oak Ridge National Laboratory, Oak Ridge, TN, USA

Engineering design studies of the feasibility of conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium to low-enriched uranium (LEU) fuel are ongoing at Oak Ridge National Laboratory as part of an effort sponsored by the U.S. Department of Energy’s Global Threat Reduction Initiative Reduced Enrichment for Research and Test Reactors program. COMSOL Multiphysics® models ...

Implementation of a Viscoelastic Material Model to Simulate Relaxation in Glass Transition - new

Z. Zheng[1], R. Zhang[1]
[1]Corning Incorporated, Corning, NY, USA

Introduction: Glass relaxation occurs in a range of temperature during transition from equilibrium to super-cooled liquid. Viscoelastic material model can be applied to simulate glass behavior during the glass transition regime and to predict the glass deformation and stress evolution. Viscoelasticity is the property of materials that exhibit both viscous and elastic characteristics when ...

Simulation of Microstructured Rolling-Sliding Contacts - new

M. Weschta[1], S. Tremmel[1], S. Wartzack[1]
[1]Engineering Design, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Bavaria, Germany

To reduce friction in lubricated tribological contacts, the surfaces of the contacting bodies can be microstructured to improve lubricating conditions. For lower loaded contacts this approach has already reached industrial applications, e.g. the piston-liner contact. For higher loaded contacts the effects are currently in basic research. Elastic deformation in the contact area plays an important ...

Sensitivity of the Compression-Softening Effect to Mesh Imperfections in Compressed Flexures - new

S. Saha[1], A. Ramirez[1], C. DiBiasio[2], M. Culpepper[1]
[1]Massachusetts Institute of Technology, Cambridge, MA, USA
[2]Charles Stark Draper Laboratory Inc., Cambridge, MA, USA

Introduction: Flexures are low-cost bearings that are capable of providing motion guidance with high repeatability and low friction (Figure 1). However, applications of flexure bearings are often limited by their low range. This is because motion guidance in flexures is provided by bending/flexing of members; thus, range is limited by the bending stiffness. As the bending stiffness can be ...

Thermal-Electrical Study of an Ultra-fast Disconnect Switch with a Piezoelectric Actuator - new

L. Graber[1], C. Widener[1], S. Smith[1], M. Steurer[1]
[1]Center for Advanced Power Systems (CAPS), Florida State University, Tallahassee, FL, USA

A research team at FSU CAPS is developing a novel fast disconnect switch based on a piezoelectric actuator for use in next-gen electric power distribution systems. COMSOL Multiphysics® software was used to optimize geometry and material selection of the disconnect switch. Current conduction, mechanical stress, and electrostatic simulations were performed to confirm that design requirements of ...

Platform Isolation Using Out-of-Plane Complaint Mechanisms - new

A. Arevalo[1], E. Rawashdeh[1], I. G. Foulds[2]
[1]Computer, Electrical & Mathematical Sciences & Engineering Division (CEMSE), King Abdullah University of Science & Technology, Thuwal, Saudi Arabia
[2]School of Engineering, University of British Columbia - Okanagan, Vancouver, BC, Canada

This paper reports the structural solid mechanic simulation of a MEMS out-of-plane platform that provides thermal and electrical isolation for a device built on it. When assemble, the platform lifted for approximately 400 μm above the substrate level. A mechanical stress analysis is then presented in order to evaluate the feasibility of building it using commonly used materials in MEMS. Our ...

Quick Search